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Abstract. In this paper, we study the braneworld scenarios in the presence of two real scalar fields coupled
by gravity. The first-order formalism for the bent brane (for both de Sitter and anti-de Sitter geometry),
leads us to discuss the shape invariance method in the bent brane systems. So, by using the fluctuations of
metric and fields we obtain the Schrödinger equation. Then we factorize the corresponding Hamiltonian in
terms of multiplication of the first-order differential operators. These first-order operators lead us to obtain
the energy spectrum with the help of shape invariance method.

1 Introduction

In this paper we focus attention on the braneworld scenario
described by five-dimensional space-time with warped
geometry [1]. In that case, we consider branes in the
five-dimensional de Sitter (dS) scenario with embedding
four-dimensional AdS, Minkowski, or de Sitter (dS) geom-
etry [2–6].
The first-order formalism in the braneworld scenario

driven by one scalar field with embedded geometry of the
AdS, M, or dS type is discussed in [1, 6]. By using [1] we can
continue this process for the two fields coupled by gravity.
This model leads us to introduce the two functions

W (φ, χ) and Z(φ, χ). By considering equations of motion
in this model which allows for the cosmological constant,
we can achieve two constraints for W and Z. Then, we re-
late the functions W (φ, χ) and Z(φ, χ) to the warp factor
(A). We obtain the potential V (φ, χ) in terms of the func-
tionsW and Z which lead us to two constraints.
With the help of this superpotential and fluctuations

of the metric and fields one can obtain the correspond-
ing Schrödinger equation. Also we note that supersymme-
try (symmetry between the fermionic and bosonic degrees
of freedom) has an important role [7–9] in analyzing the
quantum mechanical systems, since it can study remark-
able properties including the degeneracy structure of the
energy spectrum and the relations among the energy spec-
tra of the various Hamiltonians etc. In particular the en-
ergy eigenvalues are necessarily non-negative and the en-
ergy of the non-zero (zero) ground state is related to the
broken (unbroken) supersymmetry. As we know, Infeld and
Hull [10] studied the factorization method. They factor-
ized the second-order equations to first-order equations.
Gendenstein et al. considered the subject in the framework
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of the shape invariance symmetry as an important aspect
of the quantum mechanical models. So, we factorize this
Schrödinger equation in terms of a first-order equation,
and finally this leads us to consider the formalism of shape
invariance. On the other hand shape invariance [11–14]
provides perhaps the most illuminating approach to exact
solvability in quantum mechanics. Shape invariance arises
when a quantummechanical model is invariant under both
a supersymmetry algebra with a central charge and an
additional symmetry operator, analogous to the Laplace–
Lenz vector [15–20].
This paper is structured as follows. Section 2 is de-

voted to a formulation of the bent brane model with two
real scalar fields, whereas in Sect. 3 we review however
the supersymmetry algebra with the central charge and
shape invariance method. In Sect. 4 we take advantage of
this method for obtaining energy spectrum and eigenstates
in this geometry. The final section contains concluding
remarks.

2 Formalism

We consider the action of two interacting fields in five di-
mensions; the model that we investigate is described by the
action

S =

∫
d4xdy

√
|g|

×

(
−
1

4
R+
1

2
∂aφ∂

aφ+
1

2
∂aχ∂

aχ−V (φ, χ)

)
,

(1)

where φ and χ stand for real scalar fields, and we take
4πG= 1.
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The line element of the five-dimensional space-time can
be written

ds25 = gabdx
adxb = e2Ads24− dy

2, (2)

where a, b= 0, 1, 2, 3, 4, and e2A is the warp factor.
dS24 represent the four-dimensional metric:

ds24 = dt
2− e2

√
Λt
(
dx21+ dx

2
2+ dx

2
3

)
, (3)

where Λ is a four-dimensional cosmological constant. We
note that constant Λ is positive for de Sitter (dS4) space-
time, negative for anti-de Sitter (AdS4) space-time and
zero for Minkowski (M4) space-time.
At first we assume that Λ= 0 and the functions A, φ, χ

are A(y),φ(y), χ(y).
From the Einstein and Euler–Lagrange equations we

obtain,

A′′ =−
2

3
(φ′
2
+χ′

2
) ,

A′
2
=
1

6
(φ′
2
+χ′

2
)−
1

3
V (φ, χ) ,

Vφ = φ
′′+4A′φ′ ,

Vχ = χ
′′+4A′χ′ , (4)

where a prime denotes a derivative with respect to y, and

Vφ =
dV

dφ
, Vχ =

dV

dχ
.

In order to obtain the first-order equation, we use [1]

A′ =−
1

3
W ,

φ′ =
1

2
Wφ ,

χ′ =
1

2
Wχ . (5)

From (4) and (5) the explicit form of the potential is

V (φ, χ) =
1

8

(
Wφ

2+Wχ
2
)
−
1

3
W 2. (6)

Next we consider the general case with Λ �= 0 and we obtain

A′′+Λe2A =−
2

3
(φ′
2
+χ′

2
) ,

A′
2
−Λe2A =

1

6
(φ′
2
+χ′

2
)−
1

3
V (φ, χ) . (7)

The cosmological constant leads us to define the function
which corresponds to the scalar fields φ and χ. It means
that this function is completely coupled and generally re-
sponsible for the cosmological constant. Thus we gain

A′ =−
1

3
W −

1

3
ΛαZ ,

φ′ =
1

2
Wφ+

1

2
ΛβZφ ,

χ′ =
1

2
Wχ+

1

2
ΛβZχ , (8)

where Z = Z(φ, χ) is a new and arbitrary function of the
scalar fields. We choose α = 1, β = 1− s which are real
numbers. The potential V (φ, χ) is obtained by (7) and (8):

V (φ, χ) =
1

8
(Wφ+Λ(1− s)Zφ)(Wφ+Λ(1+3s)Zφ)

−
1

3
(W +ΛZ)2

+
1

8
(Wχ+Λ(1− s)Zχ)(Wχ+Λ(1+3s)Zχ) .

(9)

By inserting this potential in the equations of motion, one
can obtain the following constraint:

WφφZφ+WφZφφ+2Λ(1− s)ZφZφφ

−
4

3
WZφ−

4

3
ΛZZφ = 0 , (10)

and

WχχZχ+WχZχχ+2Λ(1− s)ZχZχχ

−
4

3
WZχ−

4

3
ΛZZχ = 0 . (11)

For simplicity, we considerZ(φ, χ) =W (φ, χ), because it is
difficult to solve these constraints in the general case:

3

2
dWφφ−W = 0 ,

3

2
dWχχ−W = 0 , (12)

where d = (1+(1+s)Λ)
(1+Λ) . These constraints guide us to con-

sider a superpotential with the following form:

W = 3a sinh(bφ)+3a sinh(bχ) , (13)

where b=±
√
2
3d , and d is positive.

With the solution of (12) in (9) and (8) we get the fol-
lowing potential, fields and A(y), respectively:

V =
3

4
a2(1+Λ)[1+(1+3s)Λ](cos2(bφ)+cos2(bχ))

−3a2(1+Λ)2[sin2(bφ)+sin2(bχ)+2 sin(bφ) sin(bχ)] ,

(14)

and

φ(y) =
1

b
sinh−1[tan(a(1+Λ)y)] ,

χ(y) =
1

b
sinh−1[tan(a(1+Λ)y)] ,

A(y) =− ln[sa2(1+Λ)sec2(a(1+Λ)y)] . (15)

The shape invariance method helps us to investigate the
stability condition. By choosing the gauge, we can study
the stability of the solution. Due to this solution, first we
consider fluctuations of the metric and scalar fields. The
perturbed metric is

ds2 = e2A(y)(gµν + εhµν)dx
µdxν − dy2 ; (16)
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we use the coordinate z which is defined by dz= e−A(y)dy.
The corresponding Schrödinger equation is

−
d2ψ(z)

dz2
+V (z)ψ(z) = k2ψ(z) , (17)

where

V (z) =−
9

4
Λ+
9

4
A′
2
(z)+

3

2
A′′(z) . (18)

In order to discuss the shape invariance method we have to
find some first-order equations. For Λ= 0, the Schrödinger
equation factorizes in the form

[
d

dz
+
3

2
A′(z)

][
−
d

dz
+
3

2
A′(z)

]
ψ(z) = k2ψ(z) , (19)

and the zero mode is the zero-energy state ψ0 = e
3
2A(z),

which identifies the ground state of the quantum mechan-
ical systems.
In general, we discuss the case of Λ �= 0, which means

that the geometry is dS or AdS. In that case the stability is
more involved and the shape invariance version will be in-
teresting. So, we consider A(z) for the case of dS geometry
which is obtained by (14),

A(z) =− ln[sa2(1+Λ)cosh2(qz)] . (20)

where q2 = 1+Λs . In the next section we take (17) and dis-
cuss the shape invariance method. The shape invariance
approach gives information on the energy spectrum and
also on the transition between the two geometries from the
stability point of view.

3 Shape invariance foundations

If the energy of the ground state is zero, we can factorize
the Hamiltonian as [11]

H1(g) =B
†(g)B(g) , (21)

where g is (are) the real parameter(s) which give(s) us the
potential, and B(g) is a first-order differential operator.
The ground state of H1 is annihilated by B(g); the part-
ner Hamiltonian of H1 will be obtained with reversing the
order of B and B†,

H2(g) =B(g)B
†(g) , (22)

and the spectra ofH1 andH2 are degenerate. The only dif-
ference is thatH1 has a zero-energy state and in generalH2
does not,

H2B =BH1 . (23)

If we had for n≥ 0,

H1Ψn
(1) =E(1)n Ψn

(1) , (24)

this would imply that

H2
(
BΨn

(1)
)
=En

(1)
(
BΨn

(1)
)
. (25)

So, the relation between the eigenvalues and eigenfunctions
of the two HamiltoniansH1 andH2 is

E(2)n =E
(1)
n+1 , E

(1)
0 = 0 ,

Ψ (2)n ∝AΨ
(1)
n+1 , (26)

where the ground state wavefunction forH1 (orH2) can be
obtained as follows:

BΨ
(1)
0 (x) = 0⇒ Ψ

(1)
0 (x) =N exp

(
−

∫ x
W (y)d(y)

)
,

(27)

B†Ψ
(2)
0 (x) = 0⇒ Ψ

(2)
0 (x) =N exp

(
+

∫ x
W (y)d(y)

)
.

(28)

Supersymmetry provides a natural context for understand-
ing the relationship between the states of H1 and those of
H2 [10], where H1 and H2 are partners. If one combines
these two operators to

H =

(
H1 0
0 H2

)
, (29)

then this matrix Hamiltonian can be obtained from the
anticommutator H = {Q,Q†}, where Q and Q† are super-
charges, given by

Q=

(
0 0
B 0

)
, Q† =

(
0 B†

0 0

)
; (30)

both Q and Q† commute with H. In this algebra we have

[H,Q] = [H,Q†] = 0 ,

{Q,Q}= {Q†, Q†}= 0 . (31)

The shape invariance is a property that arises when
there is an additional relationship between the partner
Hamiltonian H1 and H2. Suppose that these Hamiltonian
are linked by the condition

B(g1)B
†(g1) =B

†(g2)B(g2)+ c(g2) , (32)

where the real parameters g1 and g2 are related by a map-
ping f : g1 −→ g2, and c(g) is a c-number that depends on
the parameter(s) of the Hamiltonian, when this condition
holds the HamiltonianH1 is said to be shape invariant. So,
in general we can write

Hk =B
†(gk)B(gk)+ c(gk)+ . . .+ c(g2) , (33)

where

gj+1 = f(gj) ,

B†(gk)Hk+1 =HkB
†(gk) . (34)
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The ground state of each of these sectors satisfies a first-
order equation, namely

B(gk)Ψ1(x; gk) = 0 .

Now, we study supersymmetry with a central charge. Su-
persymmetric quantum mechanics [11] can be formulated
as a one-dimensional supersymmetric quantum field the-
ory. A bosonic field is, then, a real-valued function of time,
and a fermionic field is a Grassman-valued function of
time. The d= 1, N = 1 superalgebra with a central charge
is specified by the following relations:

{Q,Q†}=H ,

[H,Q] = [H,Q†] = 0 ,

{Q,Q}= {Q†, Q†}= C , (35)

where Q and C are the supercharge and central charge, re-
spectively; (35) implies [Q,C] = [Q†, C] = 0. To realize the
algebra (35), we represent the supercharges as matrices:

Q=

(
λ 0
B −λ

)
, Q† =

(
λ B†

0 −λ

)
, (36)

where λ is the real part of a c-number. This approach is
meant first to present an implementation of this algebra in
a two-sector model, and then to generalize this construc-
tion to a four-sector model.
Then the correspondingHamiltonian and central charge

are determined by the superalgebra to be, respectively,

H =

(
B†B+2λ2 0

0 BB†+2λ2

)
,

C =

(
2λ2 0
0 2λ2

)
, C ≥ 0 ; (37)

note that the central charge has only non-negative values
in this construction [7, 8].
To construct a model with four sectors, one can concen-

trate on a two-sector model. It has supercharges

Q=

⎛
⎜⎝
−λ1 0 0 0
B1 λ1 0 0
0 0 −λ3 0
0 0 B3 λ3

⎞
⎟⎠ ,

Q† =

⎛
⎜⎜⎝
−λ1 B1

† 0 0
0 λ1 0 0

0 0 −λ3 B3
†

0 0 0 λ3

⎞
⎟⎟⎠ . (38)

By using (35) and (38) for the four sectors we obtain

H =⎛
⎜⎜⎜⎝

B1
†B1+2λ1

2 0 0 0

0 B1B1
†+2λ1

2 0 0

0 0 B3
†B3+2λ3

2 0

0 0 0 B3B3
†+2λ3

2

⎞
⎟⎟⎟⎠ ,

(39)

and

C =

⎛
⎜⎜⎝
2λ1

2 0 0 0
0 2λ1

2 0 0
0 0 2λ3

2 0
0 0 0 2λ3

2

⎞
⎟⎟⎠ . (40)

As we see the sectors one and two are degenerate, with
energies bounded from below by 2λ21, and sectors three
and four are degenerate, with energies bounded from be-
low by 2λ23. The only exceptions are that sectors one and
three each have states that saturate their respective energy
bounds while the even sectors do not, and this suggest an
enhanced algebraic structure. Therefore, we have to define
the shift operator S for the four sectors in order to relate
sector two to sector three with the following form:

S ≡

⎛
⎜⎝
0 0 0 0
B1 0 0 0
0 D 0 0
0 0 B3 0

⎞
⎟⎠ . (41)

Also, this operator relates even sectors in the Hamiltonian
to BPS states. We can choose D such that the shape in-
variance condition and [H,S] = 0 are satisfied. For this,
we suppose that there is a unitary transformation which is
represented by an operatorΩ such thatB3 =Ω

†B1Ω. And
also, we use a unitary operator U such that U2 =Ω, and
the conserved shift operator takes the form

S ≡

⎛
⎜⎜⎝
0 0 0 0
B1 0 0 0
0 U†B1U 0 0

0 0 U†
2
B1U

2 0

⎞
⎟⎟⎠ . (42)

From conservation of S, one can obtain the shape invari-
ance relation,

B1B1
†−U†B1

†B1U = k ,

2λ3
2 = 2λ1

2+k+U†kU , (43)

where k is a c-number and U implements a shift in the pa-
rameter of the theory; in particular we have

H = S†S+F , (44)

where F is a diagonal matrix that one can determine:

F =

⎛
⎜⎜⎝
2λ1

2 0 0 0
0 2λ1

2+k 0 0
0 0 2λ1

2+k+U†kU 0
0 0 0 H4

⎞
⎟⎟⎠ . (45)

In the first three sectors, the energies are constrained by
a Bogmol’nyi bound, Hk ≥ (F )kk, because each of the
first sector has to be degenerate with the Bogmol’nyi-
saturating ground state of one of the first three sectors.
The constants in F represent not only the Bogmol’nyi
bounds of the various sectors, but also the first three en-
ergy eigenvalues of the original Hamiltonian.
In the next section, we shall apply the above informa-

tion to a bent brane with two scalar fields.



J. Sadeghi, A. Mohammadi: Shape invariance for the bent brane with two scalar fields 863

4 Calculation of energy spectrum
with the shape invariance method

The algebra we have described gives a natural framework
for understanding the origins of shape invariance. Also the
study of shape invariance solutions can be done by the
factorization method. Our aim is to solve and discuss the
stability of a bent brane in different geometries and with
a non-zero cosmological constant. In the previous section
we have done the perturbation to the metric and fields and
achieved the corresponding Schrödinger equation which
was the second-order equation. Here we factorize this equa-
tion to the first-order equations which are raising and low-
ering operators and generate the algebra. From these first-
order equations we easily discussed the energy spectrum
and also the stability of the system in the transition to dif-
ferent geometries. So, first we have to factorize the bent
brane Hamiltonian.
By using (18) and substituting it into (17) we have

−
d2ψ(z)

dz2
+

(
9

4
(4q2−Λ)−12q2sech2(qz)

)
ψ(z) = k2ψ(z).

(46)

For simplicity we take z = x
q
, and we have

H =−
d2

dx2
− g(g+1) sech2(x)+ g2 , (47)

where g = 3.
Nowwe are going to factorizeH in terms of the lowering

and raising operators, respectively,

B =−
d

dx
− g tanh(x) ,

B† =
d

dx
− g tanh(x) , (48)

and one can obtain the paired Hamiltonians

H1 =B
†B =−

d2

dx2
− g(g+1) sech2(x)+ g2 ,

H2 =BB
† =−

d2

dx2
− g(g−1) sech2(x)+ g2 , (49)

where

H2(g) =H1(g−1)+(2g−1) . (50)

This relation shows us there is a shape invariance condition
with c(g) = 2g−1.
In the case of a central charge, we choose the unitary

operator U as follows:

U = exp

(
∂

∂g

)
, U† = exp

(
−
∂

∂g

)
, (51)

where

U†f(g)U −→ f(g−1) .

From (42)–(44) we have

S†S =

⎛
⎜⎜⎝
B1
†B1 0 0 0

0 U†B1
†B1U 0 0

0 0 Ω†B1
†B1Ω 0

0 0 0 H4

⎞
⎟⎟⎠ , (52)

with

B1
†B1 =−

d2

dx2
− g(g+1) sech2(x)+ g2,

U†B1
†B1U =−

d2

dx2
− (g−1)(g) sech2(x)+ (g−1)2,

Ω†B1
†B1Ω =−

d2

dx2
− (g−2)(g−1) sech2(x)+ (g−2)2.

(53)

Also, by using (44) and (45), one can obtain F as follows:

F =

⎛
⎜⎜⎜⎝

−9Λ
4q2

0 0 0

0 −9Λ
4q2
+2g−1 0 0

0 0 −9Λ
4q2
+4g−4 0

0 0 0 H4

⎞
⎟⎟⎟⎠ . (54)

Therefore, the energy spectrum ofH1 is

E
(1)
0 =−

9Λ

4
,

E
(1)
1 =−

9Λ

4
+5q2,

E
(1)
2 =−

9Λ

4
+8q2,

E
(1)
3 =H4 . (55)

Also from (27) we obtain

ψ
(1)
0 (z)∝ sech

3(qz) ,

ψ
(1)
1 (z)∝ sech

−3(qz) , (56)

where they are the two first eigenstates of the original
Hamiltonian.
We note that for the AdS4 case the cosmological con-

stant is negative, so all states have positive eigenvalues. In
this case the solutions are stable. In case of the dS4 geom-
etry the cosmological constant is positive, so some states
have a negative eigenvalue. It means that we have some
tachyonic state with negative energy. Also, in case of M4
the cosmological constant is zero, so all states have a pos-
itive mode (except one of them that is the zero mode).
These results show that the transition from AdS4 and M4
to dS4 geometry is not stable.

5 Conclusion

In this paper we have considered models described by
coupled real scalar fields in five-dimensional space-time
with dS geometry. This model leads us to introduce two



864 J. Sadeghi, A. Mohammadi: Shape invariance for the bent brane with two scalar fields

couple functionsW (φ, χ) andZ(φ, χ). We related the func-
tionsW and Z to the warp factor. By entering fluctuations
of metric and fields, we obtained a Schrödinger equation.
For solving this second-order differential equation, we dealt
mainly with the possibility of obtaining first-order equa-
tions in a braneworld scenario driven by scalar fields φ and
χ, with embedded geometry of the AdS, M, or dS type.
The factorized Hamiltonian for the bent brane leads us to
investigate the shape invariance method with considering
the central extended algebra. Finally we used the shape in-
variance method and obtained the energy spectrum for all
states. Also, we have shown that the transition from the
AdS4 and M4 to the dS4 geometry is not stable. For simpli-
city we considered W (φ, χ) = Z(φ, χ) which is defined by
Wφχ = 0. It may be interesting to solve the case ofWφχ �=0.
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